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Abstract

A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary

collector is presented. The shadow cast by one side of the collector on the other side

producing a self shading effect is analysed. The direct beam, the diffuse and the albedo

radiation on the collector are determined. An example is given for the insolation on the

collector operating on Mars surface for the location of Viking Lander 1 (VLI).
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1. INTRODUCTION

Mission to Martian surface will require electric power. A power supply that requires

little installation time, being light weight and stowed in a small volume can be accomplished

by a photovoltaic (PV) array. A tent-shaped structure with a flexible PV blanket for solar

power generation is proposed in [1], Fig. 1. The array is designed with a self-deploying

mechanism using a pressurized gas expansion. The structural design for the array uses a

combination of cables, beams and columns to support and deploy the PV blanket. The array

is stowed with the blanket either folded or rolled. The main contribution to the stress in the

structure is due to the tension in the cable which supports the PV blanket. The shape of the

PV blanket is determined by an optimization between reduction in the cable tension and

increase: in blanket area. under the force Of gravity a cable carrying a uniformly

distributed load will 'take the shape of a c.atenary curve, fc(Y), with respect tO the Y±Z

plane, Fig. 2.

According to [2] and with some manipulations, fc(Y) is given by:

kEcosh(  - ) ,] (1)

The catenary constant k can be determined using the condition fc(0) = H and solving

iteratively. However, when the blanket is fairly taut, the load may be assumed uniformly

distributed along the y-axis and the catenary curve may be approximated by a parabola [2],

i.e.,:
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H
f_(y) -- _ (D - y)2

(2)

which simplifies the calculation.

Because of the shape of a catenary-tent-co!lector, a self-shading effect occurs on one

of its sides (side B in Fig. 2). In this article we analyze the shadow shape and area. Based

on these results, the beam insolation on the collector is calculated. We also determine the

diffuse and the albedo insolation on the collector. An example for the planet Mars is given

for the location of Viking Lander 1. Results for the parabolic approximation is given in

Appendix B.

2. SHADOW CALCULATION

The catenary-tent-collector is self shading. The size of the shadow and the side which

is shaded depend on the sun position. In general, both sides of the collector will be

alternately shaded in a given day if at sunrise

where

_sr < Wc - 90 ° (3)

"_c - the collector azimuth

"Vsr - the sun azimuth at sunrise.

The azimuth angles are measured from true south positively in a clockwise direction. In days

when eq. (3) is not satisfied, only one side of the collector is shaded all the times. In this

paper we analyze the shape and size of the shadow cast on a catenary-tent-collector facing

the south-north direction. The results can be generalized for an arbitrary oriented tent by

replacing the sun azimuth angle "Vs by the difference between the solar and the collector
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azimuthangles,i.e.,

: _s - _c (4)

With reference to Fig. 3, the shadow cast by line ON can be divided into three distinct

cas6s:

(i) Pz ( L , P_ ( D

(ii) Pz ( L , P_ _> D

(iii) Pz _> L , Pu ( D

(s)

It will be shown later that for the case Px _> L, Py _> D the shadow takes the shape either

of case (ii) or case (iii).

The components Px and P_ of the line OP was derived in [3,4] and are:

and

where

and

Px = H cos6 sinw/simx

Pu = H(sino cos6 cosw - cos¢ sinS)/sinet

sinct = sino sin8 + coso cos8 cosw

6 - solar declination angle

O - local latitude

tx - sun elevation angle

to - solar hour angle

7 7 :

(6)

(7)

(8)



G2se _i): Pz < L _ Ps < D

In this case the solar rays penetrate the collector surface and the shadow on the

collector takes the shape NTEExM as shown In Fig. 4. Point E is a point where the ray

penetrates the collector, and point T is a point where the ray is tangent to the collector. In

order to calculate the shaded area, the components of the points E and T must be

determined. Since the catenary function fc(Y) is hyperbolic, the solution for the component

YE is obtained numerically from the.solution of the following equation (see Appendix A):

H cosh _ + = I + g

The component x_ is then given by (see Fig. 4)

Pz
XE = _ YE

(I0)

Point T is in y-z plane, i.e.,xr = 0 and YT is obtainedfrom the solutionof (seeAppendix

A):

Yr = D - k sinh-l(H/Ps) (11)

It is easier to obtain the shaded area Ash from the "streched out" collector, Fig. 4(b), i.e.,

Ash = L N Es - 0.5 xET Ey (12)

The unshaded area Aush is given by:

A_sh = A - Ash = L(N Nn - N Es) + 0.5 x_T Es (13)

where A is the area of one side of the collector, i.e.,



A = L N Nn (14)

Defining a relative shaded area by t., we obtain

t. = (2 L N E_ - xL-T E_)/2L N Nn (15)

The length of an arc between two points Yl and Y2 is given by:

Yl Y2 : x/1 + [fc'(y)] 2 dy
1

(16)

where fc'(Y) is the derivative of the function fc(Y). The length of the arcs in eq. (15) thus

become:

:" EN Nn = _/1 + [fc'(Y)] dy = k sinh(D/k) (17)

N Ev = x/1 + [fc'(y)] 2 dy = k sinh(D/k) + sinh ye D

[( ) ( )]T Eu : _/1 + fc'(y) 2 dy = k sinh YE l_- D + sinh D k- YT
T

(18)

(19)

Case (ii): P_ < L Pu > D

This case is shown in Fig. 5. The array touches the collector at the foot, point E, and

at point U. The coordinates of point E are:

YE = D (20)

As derived in Appendix A,



Pz

xE = _ (D - Yv)
(21)

where Yu is determined from the solution of (see Appendix A):

k[ .h(OY°)] " OH- 1 + _ Yv = _ (22)

The coordinates of point T are the same as for case (i), i.e., xr = 0 and Yr is given by

eq. (11). The shaded and unshaded areas, Fig. 5(b), are, respectively:

Ash : A - 0.5 xE'T Nn (23)

Aus_ : 0.5 xr T Nn (24)

The relative shaded area is obtained as:

_. : 1 xr T Nn
2 L Nt'_Nn

(25)

where the arc length T Nn is given by:

-- ( )T Nn _/1 + [fc'(y)] 2 dy : k sinh D - YT: _
T

(26)

and N Nn is given in eq. (17).

Case (iii): Pz >_ L , Pu < D

The solar ray may either intersect the collector or may fall outside the collector. The

case of intersection was already analysed in case (i). To determine whether the solar ray

intersects the collector, eqs. (9) and (10) are solved.



If xE < L than there is an intersection. If xE > L than there is no intersection, see

Fig. 6. The coordinates of point E are:

xE = L (27)

and YE is determined from the solution of (see Appendix A):

- y_ + L _ - cosh D - YE L H
k cosh k k = Px (28)

The coordinates of point T are xr = 0 and Yr is given by eq. (11). The shaded and

unshaded areas, Fig. 6, are respectively:

Ash = L N E_ - 0.5 L T E_ (29)

Aush = L(N Nn - N Ev + 0.5 T Es) (30)

The relative shaded area is:

_. = (2 N Ey - T E_)/2 N N. (31)

where N N,, N E_, and T E_ are given in eqs. (17)-(19).

The case Pz >_ L , Pu -> D corresponds either to case (ii) or to case (iii) depending

on the ratio Px/Pu of the ray OP (see Fig. 7).

For Px/Pu < L/D the solution is as for case (ii) and

for Pz/Pu >_ L/D the solution is as for case (iii)

For a south-north oriented collector, the shadow as a function of time is symmetrical

with the solar noon. For the after noon, the shadow calculations are with respect to line

O'M (see Fig. 3) .... ::



3. SOLAR RADIATION CALCULATION

With the results developed in the previous section, the beam irradiance in W or W/m 2

and the beam insolation in Whr/day or Whr/m2-day on the catenary-tent-collector can be

determined. The diffuse and albedo components will be added to the beam to get the global

irradiance and insolation. A north-south facing eatenary-tent-collector will be considered. A

generalization to any arbitrary oriented tent may be obtained using eq. (4).

Beam lrradiance

The beam irradiance on both sides of the tent depends on the self-shading condition of

eq. (3). In calculating the irradiance on an unshaded side we resort to Fig. 8. The beam

irradiance P, in watts (W), on an unshaded side is given by:

dPb : Gb COS0 dA \ (32)

where Gb is the beam irradiance in W/m 2 normal to the solar rays, and 0 is the angle

between the solar rays and the normal to the surface, cos0 and dA are given by

and

.cosO : cos_(y) sincx + sinl3(y) coscx cosns

dA : L dS = L _/1 + [fc'(y)] 2 dy

(33)

(34)

where dS is the unit length of the collector (Fig. 8) and

sin/3(y) = Ifc'(y)l/,,/1 + [fc'(Y)] z (3S)

cost3(y) : 1/-,/1 + [fc'(y)] 2 (36)



Therefore, eq. (32) reduces to:

dPb = Gb L(sinc_ + [fc'(Y)l cosa cos-_,)dy (37)

Integrating eq. (37) in the interval [0,D], we obtain the beam irradiance, in W, on the

unshaded side of the collector, i.e.,

Pb = Gb L(D sine + H cosc_ cos'_s) 38)

Using the angle e as defined in Fig, 8, we obtain:

Pb = Gb L(H 2 + D2) 1/2 (cose simx + sine cos_x cos'_s) 39)

i.e., the beam irradiance on a catenary collector is equivalent to that of a flat plate

collector MNMsNs. This conclusion is also Valid for any non-flat shape collector.

The beam irradiance on a collector that is partially shaded can not be obtained by

multiplying the incoming beam irradiance with the factor (1-_,) as for a flat plate collector

since the beam irradiance on the collector is not uniform along the y axis of the collector,

i.e., the angle 0 varies with y. Using eqs. (33),(35) and (36), the variation of the beam

irradiance, in W/m 2, along the collector is:

Oh(y) = Gb [simx + COSC_C0S'_slfc'(Y)l]
v/I + [fc'(y)]2

and with eq. (1) we obtain:

Gb(y)- coshi____) [sinc_÷ cosa cos_s'sinh(-_)']

(40)

With reference to Fig. 9(a), the beam irradiance on the partially shaded side of the
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collector for case (i) is given by:

/? /,°p_h = Oh(y) dAl + Oh(y) dA2
T 1_"

where Go(Y) is given by eq. (40), and

dS = x cosh(-_.Y_ dydAl = x
k 1¢ !

_-
s

(41)

where x and y ale related by (Fig. 9(a))

( x_ )(Y - Yr)X = YE YT

(42)

(43)

Substituting these results, we obtain the beam irradiance on the partially shaded side of the

collector:

(45)

Similarly, the beam irradiance for case (ii) (Fig. 9b) is:

P_'h = Gb fD[ sin_' +c°sc'uT cos'is sm _---k---)i] ( D-" h/D-y XEyT) (Y- YT)dy

and the beam irradiance for case (iii) (Fig. 9c) is:

(46)
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I 1 (47)

In winter, side A (Fig. 2) remains always unshaded, therefore the beam irradiance PbA

on this side is given by eq. (38) or eq. (39). Side B may be partially shaded and the beam

irradiance P_,_ is given by eqs. (,45), (46) or (47) where the collector azimuth is 180 ° ,

therefore, "is is replaced by ('_s- 180°). The total beam irradiance on the

catenary-tent-collector in winter is:

Pb = P_A + P_ (48)

In summer, early in the morning and late in the afternoon, side A is partially shaded,

therefore, the beam irradiance PbA is given by eqs. (45), (46) or (47). Side B is unshaded,

and the beam irradiance PbB is given by eq. (38) with the azimuth "ts-180 °, i.e.,

PbB = Gb L[D sincx + H cosc_ cos(ws-180°)] (49)

thus the beam irradiance on both sides of the tent collector for early morning and late

afternoon hours is:

Pb : P_ + PbB (50)

For other hours of the day, side B will be partially shaded and eq. (48) applies.
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Diffuse lrradiance

The diffuse irradiance on an incremental area dA is given by

where

dPa = Gab dA FaA-s

G_h - diffuse irradiance on a horizontal:Surface

F,_a-s - view factor of dA with respect to the sky

(51)

For sufficiently small dS, the view. factor for dA is given by:

Fda-s = 0.5[1 + cos/3(y)] (52)

Using eqs. (34), (36) and (52) for eq. (51) we obtain:

dPa = 0.5 Gab L(_/1 + [fc'(y)] 2 + 1)dy

Integrating for y in the interval [0,D] we get the diffuse irradiance on one side of the tent:

P,_ = 0.5 Gab L(N Nn + D) = 0.5 Gab L[k sinhiD/k) + D] (53)

Since the diffuse irradiance is independent of the orientation of the collector (for

skies); eq. (53) applies also to the other side of the tent.

The view factor of a catenary collectors can now be calculated by defining:

P,t = Gab A Fa-s

using eqs. (17) and (53) one obtains:

E ° ]Fa-s = 0.5 1 + k sinh(D/k)

isotropic

(54)

(55)
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Albedo

The albedo can be determined by using the expression:

Pat = al Oh A FA-c (56)

where al - the albedo factor

G^ - global irradiance on a horizontal surface

FA-a - view factor of area A with respect to ground

The view factor of area A with respect to the sky, FA-s, and with respect to the ground,

FA-g, are related by [5]:

F,i-s + FA-a = 1 (57)

obtaining with eq. (55):

[ o ]F,4-G = 0.5 1 k sinh(D/k)
(58)

Using eq. (14), (17), (56) and (58) we obtain the albedo irradiance on one side of the tent

as:

Pat = 0.5 al G^ L[k sinh(D/k) - D] (59)

Since the albedo irradiance is independent on the orientation of the collector eq. (59) applies

also to other side of the tent.

4. Example

The example refers to a south-north facing catenary-tent-collector deployed on the

Mars surface [6] at the locations of Viking Lander VLI (Latitude - 22.3°N, Longitude -
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47.9°W) and in an autumndayLs = 200° [6]. For this time of the year eq. (3) does not

apply and, therefore, only side B will be partially shaded during the day. The dimensions of

the catenary collector are: D -- 3m, H = 2m and L = 1.5m. Since fe(0) = H, this results

in k = 2.53 and the catenary equation is given by:

fc(Y) = 2.53[cosh(1.186 - 0.395y) - 1] (60)

Figure 10(a) shows the shadow shapes on side B of the catenary collector for O = 22.3°N

for different hours of the day. The shadow calculations are based on section 2. For

comparison, the shadow shapes for 0=32 ° are shown in Fig. 10(b). As expected, the

self-shading effect is more pronounced for higher latitudes. It is interesting to note that for

O=22.3ON, the shadow effect is quite small during the noon hours. In summer, the shadow

will be even less.

The insolation of the catenary-tent-collector for O=22.3°N, Ls=200 ° and albedo a1=0.22

is shown in Table 1 based on radiation data at VLI [6]. The table shows the beam, diffuse

and the albedo insolations on sides A and B in kWhr-day and kWhr/m2-day. As expected,

the beam insolation on side B is lower by 59.6% than on side A. It is interesting to note

that the diffuse insolation comprises 46.6% of the global insolation. This characteristic is

typical for Mars, a place where the atmosphere consists mainly of dust particles.

Table 1. - Insolation on a catenary-tent collector, O=22.3°N, Ls=200 °, ai=0.22

BEAM COMPONENT DIFFUSE

COMPONENT

ALBEDO

COMPONENTside A side B Total

Q(kWhr-day) 12.65 5.11 17.76 16.27 0.89 34.92

q (kWhr/mZ-day) 2.246 0.907 1.577 1.445 0.079 3.101

GLOBAL

INSOLATION
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5. CONCLUSIONS

The article analyses the performance of a catenary-tent-collector [1] (a flexible

blanket that falls freely on both sides of a central support). This kind of collectors has

characteristics (portability and simplicity) that are desirable for solar power plants on outer

space planets. Because of its shape, there is a self-shading effect that must be taken into

account in the solar radiation calculation. Therefore, the shape and area of the shadow on

the collector is calculated and used" in the determination of the beam radiation. The diffuse

and albedo radiation were also calculated to determine the global radiation on the collector.

The numerical example is based on solar radiation data on Mars.

A

Ash

Aush

D

FA-c

F,4-s

FdA-s

Gb

Gdh

Oh

H

k

6. NOMENCLATURE

Collector area, [m 2]

shaded area of a collector, [m 2]

unshaded area of a collector, [m]

length of the collector, [m]

view factor of area A with respect to ground

view factor of area A with respect to sky

view factor of incremental area dA with respect to sky

direct beam irradiance, [W/rn 2]

diffuse irradiance on a-horizontal surface, [W/m2] :

global irradiance on a horizontal surface, [W/m _]

height of collector, [m]

catenary constant
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L

Ls

Pat

Pb

PbA, PbB

psh lash.
bA' --bB

Pz,Ps

0

q

IX

q'c

"/s

"s/st

6

£

9

_J

collector width, [m]

areocentric longitude of the sun (for Mars)

albedo irradiance, [W]

direct beam irradiance on an unshaded side of a collector, [W]

direct beam irradiance on a partially shaded side of a collector. [W]

direct beam irradiance on an unshaded side A and B of a collector,

respectively, [W]

direct beam irradiance on a partially shaded side A and B of a collector,

respectively, [W ]

x and y components of a shadow length. [m]

insolation, [kWhr-day]

insolation, [kWhr/m2-day]

sun altitude

collector azimuth

sun azimuth

sun azimuth at sunrise

solar declination angle

characteristic angle of the collector

angle between solar ray and the normal to the collector

relative shaded area

local latitude

solar hour angle
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APPENDIX h

Calculation of points E and T

Calculation of Point E and T for case (i)

Point E

Point E may be calculated from the projection of the solar ray NP on the z-y plane,

Fig. A1 (a). The projection line equation is:

z = H(1 - y/Ps) (A.1)

The intersection of the projection line, eq. (A1) with the catenary equation fc(Y) yields the

coordinate YE, i.e., the solution of:

k[D- yE_ YE = k (A.2)
cosh_ ]_ + _ I +

The coordinate xE is on line OP, i.e.,

P.r

xE : V_ yE (A.3)

and finally the coordinate zE is calculated from eq. (A1).

Point T

Point T is determined by a sun ray that its projection on the z-y plane is tangent to

the arc N Nn, Fig. A1 (b), i.e., at this point, the derivative of fc(Y) is equal to the slope

of line AB. From eq. (1)

fc'(y) =-sinh( D k----_y)
(A.4)
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Since A--B and N P_ are parallel lines, the slope of line AB is -H/Py, thus obtaining:

Yr = D - k sinh-l(H/P_) (A.S)

The coordinate xr = 0 and the coordinate zr is calculated from the fc(Y) equation.

Calculation o[ ytl and xg [or case (ii)

A sun ray that touches the foot of the tent at point E passes through point U on the

blanket, Figs. 5 and A.l.(a). It follows that

(D - Yv)/xE = P_/Px

and

(A.6)

zv _ fc(Yv) _ H

D - Yv D - Yv P_
(A.7)

from which Yu is determined by solving:

H DH
fc(Ye) + Fvv Yv =

where fc(Y) is given in eq. (1). The coordinate x_: is then calculated from eq. (A.6).

(A.8)

Calculation o/ y¢ for case (iii)

Referring to Figs. 6 and A.I (b), we may write

(y_ - yv)/L = Ps/P-

and

(A.9)

zv - z.____g_ fc(Yv) - fc(YE) _ H
Y_ - Yv - YE - Yv -

(A.10)

2O



From eqs. (A.9) and (A.10), yt is determtnedby:

fc(YE- L P--_)- fc(YE) L H

where fc(Y) is given in eq. (1).

(A.11)

APPENDIX B

Using the parabolic approximation for fc(Y) greatly simplifies the mathematical

calculation. The error is small and the results are very similar to the catenary case. The

procedure for calculating the points for the shadows are the same as in Appendix A but now

fc(Y) is the parabolic approximation (eq. (2)), i.e.,

-2H=.(1 rc y :y(, (B.1)

Case (i)

The coordinates of points E and T are:

xE: = D • _--_ 2 - , y_ = D 2 - , zt- = H _--_y- 1
(B.2)

XT = 0 , yr = D(1 - _) , Z r = H(_py)2 (B.3)

With these results, the arcs N Nn, N E_ and T Es can now be determined. The length of an

arc is given by eq. (16) and for the parabolic approximation we have:

g(y) = _/I + [fc'(y)]2 dy = I + _ (O - y) dy

21



the solution of the integral is:

g(y) = _-_ sinh -1 _ (y - D) +
(B.4)

The arc lengths are therefore:

N N_ = g(D) - g(0) (B.5)

N Ev -- g(YE) - g(0) (B.6)

T Ey = g(y_:) - g(Yr) (B.7)

Case (ii)

Solving eq. (A.8) with eq. (2) for Yv (Fig. 5) results in:

and using eq. (A.6) we obtain the coordinates of x_:. The coordinates of points E and T are:

(2--P-_) D (2__y) 2XT = 0 . YT -- D 1 - , zr = H (B.10)

The expression for T Nn is given by:

, YE = D , zE = 0 (B.9)

T Nn = g(Yr) - g(D) (B.11)

22



whereg(y) is given in eq. (4).

Case (iii)

Solving eq. (A.11) with eq. (2) for YE (Fig. 6) results in:

(B.12)

The coordinates of points E and T are:

XE = L , YE = D 1 - _ + L 2Pz

XT= 0

.(D0 ZE =

z,:

23



Table1. - Insolationon a catenary-tentcollector,_=22.3ON,Ls=200°, a1=0.22

Q(kWhr-day)

q (kWhr/m2-day)

BEAM COMPONENT

side A

12.65

2.246

side B

5.11

O. 907

Total

17.76

1. 577

DIFFUSE

COMPONENT

16.27

1.445

ALBEDO

COMPONENT

0.89

0.079

GLOBAL

INSOLATION

34.92

|

3.101

Figure 1 .--Artist's view of a catenary-tent-collector.
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Figure 6.--Catenary collector - case (iii) (a) shadow parameters, (b) stretched-out
shadow shape.
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Figure 7,--Catenary collector- shadow shape for Px > L, Py > D (a) Px/Py >_ L/D, (b) Px/Py < LID.
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